A Surgeon’s Resource Guide to Endocrine Therapy for the Management and Risk Reduction of Hormone Receptor Positive Breast Cancer

Endocrine therapy is an effective treatment for breast cancer. It is used in the adjuvant setting for hormone receptor positive (HR+) invasive breast cancer and ductal carcinoma in situ, as neoadjuvant therapy for HR+ invasive cancer, and for reducing the risk of HR+ breast cancer in high-risk women*.

In today’s treatment paradigm it is important for breast surgeons to understand the indications for endocrine therapy and be comfortable prescribing and managing adverse events of endocrine therapy. This will allow more patients to be offered neoadjuvant and risk-reducing endocrine therapy in their community and for surgeons to be involved more actively in the management and outcomes of their patients with breast cancer or high risk. This guide is meant to be a resource for breast surgeons and does not replace treatment guidelines from the National Comprehensive Cancer Network or the American Society of Clinical Oncology.

*For the purposes of this guideline, the terms “woman” and “women” refer to individuals assigned female at birth (AFAB). The terms “man” and “men” refer to individuals assigned male at birth. Patient management recommendations in this guideline apply to those AFAB unless noted otherwise.
Key Points

Classes of Drugs
- Available endocrine therapies include:
 - Selective estrogen receptor modulators (SERMs)—tamoxifen and raloxifene (Note—raloxifene is used for risk reduction but not for cancer therapy)
 - Aromatase inhibitors (AIs)—anastrozole, letrozole, and exemestane
 - Selective estrogen receptor down regulators (SERDs)—fulvestrant and elacestrant (Note—SERDs are used for cancer therapy but not for risk reduction)
- Tamoxifen and raloxifene both increase the risk of venous thromboembolic events; tamoxifen increases the risk of endometrial cancer, and this increased risk is most pronounced in older patients.
- Premenopausal women for whom therapeutic endocrine therapy is recommended can use AIs with ovarian function suppression (OFS).
- AIs contribute to bone loss and osteoporotic fracture. Bone mineral density should be assessed prior to a patient starting an AI and reassessed every 1-2 years.

Risk Reduction
- Endocrine therapy should be offered for risk reduction to women with atypical ductal hyperplasia, atypical lobular hyperplasia, or lobular carcinoma in situ and to those with a 5-year risk ≥3% using the Gail model or with a 10-year risk ≥5% using Tyrer-Cuzick.
- Endocrine therapy reduces the risk of developing estrogen receptor positive (ER+) breast cancer by 50% or more in the above groups of patients; options include tamoxifen (the only option for premenopausal women), raloxifene, exemestane, and anastrozole.

Neoadjuvant Endocrine Therapy
- Neoadjuvant endocrine therapy is an option for postmenopausal patients with ER+ tumors. Neoadjuvant endocrine therapy in ER+ breast cancer can enable breast conservation and allows evaluation of tumor endocrine responsiveness to guide additional therapy.

Adjuvant Endocrine Therapy
- Many premenopausal patients with ER+ breast cancer benefit from OFS even with tamoxifen.
- Postmenopausal patients with invasive breast cancer (regardless of hormone receptor status) should be offered a bisphosphonate to reduce the risk of disease recurrence.
- Extended endocrine therapy reduces recurrence and second breast cancer events, but no robust data shows an impact on survival. Patients most likely to benefit from extended endocrine therapy are those with higher risk, node positive disease.
- In addition to clinical factors, genomic assays (such as Breast Cancer Index) provide additional information regarding the risk of distant recurrence and the likelihood of benefit with extended endocrine therapy.
- Side effects are common with endocrine therapy, but multiple options exist to reduce and manage those side effects.
Outline

- **Section 1**
 Classes of Drugs
 1A. Selective Estrogen Receptor Modulators (SERMs)
 - Tamoxifen
 -Raloxifene
 1B. Aromatase Inhibitors (AIs)
 - Anastrozole
 -Letrozole
 -Exemestane
 1C. Selective Estrogen Down Regulators (SERDS)
 - Fulvestrant
 -Elacestrant

- **Section 2**
 Risk-Reducing Endocrine Therapy
 2A. Eligible Patients
 2B. Efficacy of Risk-Reducing Endocrine Therapy
 - Tamoxifen trials
 -Raloxifene trials
 -Aromatase inhibitor trials

- **Section 3**
 Therapeutic Endocrine Therapy
 3A. Ductal Carcinoma in Situ
 3B. Endocrine Therapy for the Management of Hormone Receptor-Positive Invasive Breast Cancer
 3C. Neoadjuvant Endocrine Therapy
 3D. Length of Endocrine Therapy
 3E. Endocrine Therapy in Special Populations
 - Patients Desiring Pregnancy
 -Elderly or Frail Patients
 -Male Breast Cancer Patients
 3F. Indication for the Addition of Non-Endocrine Therapies
 - Bone-Directed Therapy
 -Cyclin-Dependent Kinase Inhibitors

- **Section 4**
 Genomic Tumor Evaluation of Hormone Receptor-Positive, HER2-Negative Breast Cancer to Guide Use of Chemotherapy
 4A. Oncotype DX
 4B. MammaPrint
 4C. EndoPredict
 4D. Prosigna

- **Section 5**
 Genomic Tumor Evaluation of Hormone Receptor-Positive, HER2-Negative Breast Cancer to Guide Use of Extended Endocrine Therapy
 5A. Breast Cancer Index
Section 6
Management of Endocrine Therapy Side Effects

6A. Vasomotor Symptoms
6B. Thromboembolic Events
6C. Endometrial Effects
6D. Vaginal Atrophy/Dyspareunia
6E. Osteopenia/Osteoporosis
6F. Musculoskeletal Complaints
6G. Weight Gain

Tables
Table 1, Key Risk-Reducing Endocrine Therapy Trials
Table 2, Key Trials Examining the Ideal Length of Endocrine Therapy

List of Abbreviations

AI Aromatase inhibitor
ASCO American Society of Clinical Oncology
BCFI Breast cancer-free interval
BCS Breast conserving surgery
BCSS Breast cancer-specific survival
CI Confidence interval
DCIS Ductal carcinoma in situ
DFS Disease-free survival
DVT Deep venous thrombosis
ER Estrogen receptor
HR Hazard ratio
HR+ Hormone receptor positive
IBC Invasive breast cancer
LCIS Lobular carcinoma in situ
NCCN National Comprehensive Cancer Network
NET Neoadjuvant endocrine therapy
OFS Ovarian function suppression
OS Overall survival
PE Pulmonary embolism
PFS Progression-free survival
PgR Progesterone receptor
RFS Recurrence-free survival
RR Relative risk (rate ratio)
RR-ET Risk-reducing endocrine therapy
SERD Selective estrogen receptor degrader
SERM Selective estrogen receptor modulator
VMS Vasomotor symptoms
VTE Venous thromboembolism
ZA Zoledronic acid
Section 1 – Classes of Drugs

Section 1A – Selective Estrogen Receptor Modulators

Selective estrogen receptor modulators (SERMs) act as estrogen agonists or antagonists depending on the target tissue. There are multiple drugs in this category, including tamoxifen, which has been used for decades to prevent and treat hormone receptor positive (HR+) breast cancer in pre- and postmenopausal women and in men. The SERM raloxifene reduces the risk of HR+ breast cancer in high-risk postmenopausal women but is not used to treat patients already diagnosed with HR+ breast cancer.

Tamoxifen\(^1\) and raloxifene\(^2\) competitively inhibit the action of estradiol by binding to the estrogen receptor (ER). Both exert an antiestrogenic effect on breast tissue and an estrogenic effect on the skeletal system; tamoxifen, but not raloxifene, is an estrogen agonist in the uterus. Both lower cholesterol and increase the risk of venous thromboembolism (VTE). A family history of VTE is not a contraindication to SERM use, but SERMs should be used cautiously in those with a personal or family history suggestive of a coagulopathy. Frequent side effects include vasomotor symptoms (VMS), increased vaginal discharge, arthralgias and myalgias, and peripheral edema.

Tamoxifen

Tamoxifen indications include:

- Treatment of HR+ invasive breast cancer (IBC) in pre- and postmenopausal women (20 mg daily for at least 5 years),
- Treatment of HR+ ductal carcinoma in situ (DCIS) in pre- and postmenopausal women (20 mg daily for 5 years; 5 mg daily for 3-5 years is an option for women unable to tolerate or unwilling to take the standard 20 mg dose),
- Treatment of IBC in men (20 mg daily for at least 5 years), and
- Risk reduction in high-risk women aged 35 years and older (20 mg daily for 5 years; 5 mg daily for 3-5 years is an option for women unable to tolerate or unwilling to take the standard 20 mg dose).

Tamoxifen contraindications include:

- The need for anticoagulation therapy or a history of pulmonary embolism (PE) or deep venous thrombosis (DVT), and
- Pregnancy or breastfeeding.

Tamoxifen warnings:

- Tamoxifen increases the risk of endometrial hyperplasia, polyps, and malignancy (primarily adenocarcinoma);
- Tamoxifen has been associated with cataracts and increased liver enzymes; and
• Tamoxifen efficacy may be affected by coadministration of drugs requiring metabolism through the P450 CYP2D6 enzyme system.

Raloxifene

Raloxifene indications include:

- Treatment and prevention of postmenopausal osteoporosis (60 mg daily), and
- Risk reduction in high-risk postmenopausal women aged 35 years and older (60 mg daily for 5 years).

Raloxifene contraindications include:

- A history of PE, DVT, or retinal vein thrombosis,
- Premenopausal status, and
- Pregnancy or breastfeeding.

Raloxifene warnings:

- Raloxifene may increase serum triglycerides in patients with a history of exogenous hormone-dependent hypertriglyceridemia; and
- Potential drug interactions include cholestyramine, warfarin, and other heavily protein-bound drugs.

Section 1B – Aromatase Inhibitors

In postmenopausal women, most estrogen production occurs in adipose tissue, the adrenal glands, muscle, and breast tissue, where aromatase converts androgens into estrogen. The nonsteroidal aromatase inhibitors (AIs) anastrozole\(^3\) and letrozole\(^4\) bind reversibly to aromatase, while exemestane\(^5\), a steroidal AI, irreversibly binds to aromatase.

The resulting decrease in estrogen negatively impacts bone health and serum cholesterol and increases the risk of cardiac events. Common side effects include arthralgias, hair thinning, and vaginal atrophy and dryness. Standard doses for therapeutic and risk-reducing indications are anastrozole 1 mg daily, letrozole 2.5 mg daily, and exemestane 25 mg daily.

Anastrozole, letrozole, and exemestane

AI Indications include:

- The treatment of HR+ breast cancer;
- Clinical trial data supports the off-label use of anastrozole and exemestane as risk-reducing agents for high-risk women.
AI contraindications and warnings:

- All 3 AIs are approved for use in postmenopausal women;
- All 3 AIs are associated with a reduction in bone density, which should be assessed prior to AI initiation and every 1-2 years during AI therapy;
- Letrozole and anastrozole may increase serum cholesterol; and
- Patients with pre-existing ischemic heart disease experienced more ischemic cardiac events with anastrozole.

Section 1C – Selective Estrogen Receptor Down Regulators

Until 2023, the only selective estrogen receptor down regulator (SERD) available was fulvestrant, which binds to and degrades the ER. The maintenance dose is 500 mg monthly by intramuscular injection. Fulvestrant is indicated for patients with metastatic breast cancer who progress on AIs or who have compliance issues with daily oral medication. Common side effects include injection site reactions, arthralgias, nausea, and elevated liver enzymes. Fulvestrant is currently being evaluated as neoadjuvant endocrine therapy for operable breast cancer in the ALTERNATE trial.

In 2023, the Food and Drug Administration (FDA) approved elacestrant, the first oral SERD, for the treatment of metastatic HR+ breast cancer with an ESR1 mutation that has progressed on at least one line of prior therapy. In the EMERALD trial, elacestrant significantly improved progression free survival (PFS) compared with fulvestrant in patients with ESR1-mutated tumors. An ongoing clinical trial is evaluating the oral SERD giredestrant for early stage, ER+, HER2 negative breast cancer.

Fulvestrant

Fulvestrant indications include:

- HR+, HER2 negative advanced breast cancer in postmenopausal women not previously treated with endocrine therapy;
- HR+ advanced breast cancer in postmenopausal women with disease progression on endocrine therapy;
- HR+, HER2 negative advanced or metastatic breast cancer in postmenopausal women, in combination with ribociclib, either as initial endocrine therapy or with disease progression on endocrine therapy; and
- HR+, HER2 negative advanced or metastatic breast cancer, in combination with palbociclib or abemaciclib, with disease progression on endocrine therapy.

Fulvestrant contraindications and warnings:

- Fulvestrant should not be used in women who are pregnant or breastfeeding; and
- Fulvestrant should be used with caution in patients with increased bleeding risk.
Elacestrant

Elacestrant indications include:

- Treatment of postmenopausal women or adult men with ER+, HER2 negative, ESR1-mutated advanced or metastatic breast cancer with disease progression following at least one line of endocrine therapy.

Elacestrant contraindications and warnings:

- Elacestrant may cause elevations in serum cholesterol and triglycerides; and
- Elacestrant should not be used in women who are pregnant or breastfeeding.
Section 2 – Risk-Reducing Endocrine Therapy

Section 2A – Eligible patients

Risk-reducing endocrine therapy (RR-ET) roughly halves the risk of HR+ breast cancer in high-risk women, and the protection is durable. Patients most likely to benefit are those with significantly elevated risk, especially those with atypia (atypical ductal hyperplasia [ADH] or atypical lobular hyperplasia [ALH]) or lobular carcinoma in situ (LCIS). In fact, risk reduction is as high as 75% for patients with ADH or ALH, which are strongly estrogen-driven. RR-ET also reduces the likelihood of benign disease and biopsies and may decrease breast density. It does not, however, impact survival. Of note, few women with hereditary cancer predisposition were included in the RR-ET trials.

Almost all RR-ET data is from women aged 35 years and older; data is additionally limited to cis-gender women. Tamoxifen is the only option for premenopausal women; women taking tamoxifen should not be pregnant or breastfeeding or imminently planning pregnancy and need effective contraception. Postmenopausal women are eligible not only for tamoxifen but for raloxifene, anastrozole, or exemestane; the choice is guided by patient comorbidities and preference and by drug side effects, adverse events, and cost. Women aged 70 years and older may benefit from RR-ET depending on their short-term risk (e.g. those with atypia or LCIS), overall health, and life expectancy.

Consensus guidelines recommend offering RR-ET to women with:

- ADH, ALH, or LCIS;
- An estimated 5-year breast cancer risk ≥3% using the National Cancer Institute Breast Cancer Risk Assessment Tool (modified Gail score; RR-ET can be offered at a 5-year risk as low as 1.7%);
- An estimated 10-year breast cancer risk ≥5% using the International Breast Intervention Study (IBIS)/Tyrer-Cuzick (TC) Risk Calculation;
- A relative risk 4 times the population average for those aged 40-44 years;
- A relative risk 2 times the population average for those aged 45-69 years;
- A history of thoracic radiation therapy prior to age 30; or
- A highly- or moderately-penetrant breast cancer predisposition gene.

Unfortunately, uptake of RR-ET is low, largely because of actual and feared side effects. Reassuringly, most side effects and adverse event risks return to baseline after medication cessation. Charts published by Freedman et al weigh the risks and benefits of tamoxifen and raloxifene for women with and without a uterus, based on the degree of risk elevation; these may help with RR-ET decision-making.
Section 2B – Efficacy of Risk-Reducing Endocrine Therapy

Placebo-controlled tamoxifen trials

Four large trials compared the impact of tamoxifen 20 mg daily with that of placebo on breast cancer risk: Royal Marsden, IBIS-I, NSABP P-1, and the Italian Tamoxifen Prevention study. Participants in the Royal Marsden trial received tamoxifen 20 mg or placebo for 8 years, while the other 3 trials used a 5-year course of tamoxifen 20 mg or placebo. More recently, the Italian TAM-01 trial compared a 3-year course of tamoxifen 5 mg with placebo; these trials are summarized in Table 1.

- The Royal Marsden trial included women aged 30-70 years and at increased risk based on family history. There was a nonsignificant reduction in IBC overall or for ER+ disease during the treatment period, but tamoxifen reduced ER+ disease risk by 52% in the post-treatment period. Tamoxifen increased the risk of endometrial cancer, approaching statistical significance. There was no significant difference in VTE, stroke, or fracture risk.
- IBIS-I enrolled high risk women (defined by family history or benign disease), aged 35-70 years. At 16 years, ER+ IBC risk was reduced by a third, and this effect was durable. DCIS risk was also reduced, but only during the first 10 years. The risk reduction benefit was greatest for women aged ≤50 years. Endometrial cancer risk and VTE risk were significantly higher, but only during years 0-5 and years 0-10, respectively. There was no significant difference in cardiovascular events, stroke, mortality, or breast cancer-specific mortality.
- The National Surgical Adjuvant Breast and Bowel Project (NSABP) breast cancer prevention trial (NSABP P-1) included patients who were: (1) aged >60 years (without qualifying risk calculation) or (2) aged 35-59 years with a 5-year risk >1.66% or with LCIS. Risk reduction was 43% for IBC, 37% for DCIS, and 69% for ER+ disease. Risk reduction was 46% for patients with LCIS and 75% for those with atypia (56% and 86% risk reduction, respectively, were reported in the initial publication with shorter follow-up). Endometrial cancer and stroke were significantly more common with tamoxifen, driven primarily by events in women ≥50 years of age; the risk of PE was elevated regardless of age. Tamoxifen reduced fracture risk by 32%. Older patients and those on tamoxifen longer were more likely to develop cataracts.
- Italian Tamoxifen Prevention Study participants were all status post hysterectomy, but not all were high risk. Tamoxifen reduced breast cancer by 76% only for high-risk women (defined by height, menarche, menopause status, and parity). Adverse events included increased triglycerides, VTE, and cardiac arrhythmia or atrial fibrillation.

A meta-analysis confirmed that tamoxifen had no effect on ER negative breast cancers but reduced ER+ cancers by 48%. Rates of endometrial cancer were increased in all tamoxifen prevention trials (consensus relative risk [RR] 2.4; 95% confidence interval [CI]...
1.5-4.0), as were VTEs (RR 1.9; 95% CI 1.4-2.6). There was no effect on non-breast cancer mortality.

Side effects, adverse events, and fear of these events limit patient adherence to RR-ET. The TAM-01 trial compared 5 mg of tamoxifen for 3 years with placebo for patients with ADH, LCIS, or ER+/ER unknown DCIS. At a mean follow-up of 9.7 years, this low dose reduced the likelihood of IBC or DCIS by 42% compared with placebo. There was 1 endometrial cancer in the tamoxifen arm and 1 VTE in each group. Overall hot flash score was not significantly higher with tamoxifen. Because of the robust data on the higher dose of tamoxifen, though, 20 mg for 5 years remains the standard. However, for women unwilling to take or unable to tolerate the standard dose, 5 mg daily for 3-5 years is an option.

Key risk-reduction raloxifene trials

Several trials compared raloxifene with placebo; one trial compared raloxifene with tamoxifen. The dose of raloxifene in all trials was 60 mg daily, except for the MORE trial which randomized participants to raloxifene at either 60 mg or 120 mg daily or to placebo (Table 1).

- The MORE (Multiple Outcomes of Raloxifene Evaluation) trial randomized average risk, postmenopausal women with osteoporosis to raloxifene at one of 2 doses or placebo for 4 years. Raloxifene reduced the risk of ER+ IBC by 90%. Vertebral fracture risk and bone density were significantly better with raloxifene, although there was no significant difference in non-vertebral fractures.
- For the CORE (Continuing Outcomes Relevant to Evista) trial, MORE trial participants could extend their original therapy assignment by 4 years; participants randomized originally to either dose of raloxifene received 60 mg for the CORE extension. IBC risk was reduced 76% during the 8-year study period. There was no significant difference in endometrial cancer risk with raloxifene, but VTE risk was doubled.
- The RUTH (Raloxifene Use for The Heart) trial enrolled patients with heart disease or with cardiac risk factors. IBC risk was reduced 44% with raloxifene, but there was no impact on cardiac outcomes. Raloxifene increased VTE events and reduced vertebral fractures.
- The STAR (Study of Tamoxifen and Raloxifene) trial randomized women with a 5-year Gail calculation of >1.67% or with LCIS to tamoxifen or raloxifene. At 10 years, raloxifene was moderately inferior to tamoxifen for reducing IBC but caused fewer endometrial cancers and VTEs. Impact on noninvasive breast cancer was not significantly different between the 2 drugs, especially with longer follow-up.

A meta-analysis of tamoxifen or raloxifene versus placebo trials confirmed no impact on ER negative disease or non-breast cancer mortality with raloxifene, and like
tamoxifen, raloxifene increased VTE risk. However, raloxifene did not increase the risk of endometrial cancer.

Key risk reduction aromatase inhibitor trials

Using an AI (specifically exemestane or anastrozole) to reduce breast cancer risk is an off-label use, but is supported by 2 randomized, controlled trials (Table 1).

IBIS-II²⁹ included postmenopausal women (1) aged 60–70 years with a breast cancer RR 1.5 times their age average, (2) aged 45–60 with a 2-fold RR, (3) aged 40–44 with a 4-fold RR, (4) with DCIS, LCIS, atypia, or (5) with a Tyrer Cuzick 10 year risk >5%. IBC and DCIS events were reduced by half, and there was no significant increase in fractures or cardiovascular events with anastrozole.

The MAP.3 (Mammary Prevention 3) trial³⁰ randomized postmenopausal patients aged >35 years to exemestane, exemestane plus celecoxib, or placebo. Inclusion criteria included (1) age ≥60 years, (2) Gail 5 year risk >1.66%, or (3) atypia/LCIS; prior DCIS treated with mastectomy was allowed (2.5% of the total cohort). With a median 3 year follow-up, exemestane reduced IBC by 65%, without significantly increasing fractures or cardiovascular events.

Although not prevention trials, the ATAC (Arimidex, Tamoxifen, Alone or in Combination)³¹ and the MAP.17R³² trials showed fewer contralateral breast cancers with anastrozole versus tamoxifen, and with letrozole versus placebo, respectively, providing additional evidence supporting the risk-reducing benefit of AIs.
Section 3 – Endocrine Therapy for the Treatment of HR+ Breast Cancer

Endocrine therapy is effective adjuvant and neoadjuvant therapy for patients with HR+ breast cancer. Drug selection for an individual patient is influenced by menopause status, comorbidities, contraindications, and the side effect profile.

Tamoxifen is an option for any patient with ER+ and/or progesterone receptor positive (PgR+) invasive or noninvasive breast cancer. In contrast, AI use is limited to postmenopausal patients and premenopausal patients receiving ovarian function suppression (OFS). Overall, clinical trial data shows better outcomes with AIs versus SERMS, but both categories of endocrine therapy improve local, regional, and distant disease-free survival.

Prior to starting adjuvant endocrine therapy for HR+ breast cancer, potential benefit from systemic chemotherapy needs to be assessed (see Section 4). If systemic chemotherapy is needed, endocrine therapy should start after chemotherapy. Endocrine therapy is usually initiated after completion of radiation therapy, but administration with concurrent radiation is an option.

Section 3A – Ductal Carcinoma in Situ

Ductal Carcinoma in Situ (DCIS)

Following local therapy for HR+ DCIS, endocrine therapy reduces the risk of recurrence; endocrine therapy for DCIS does not, however, improve survival. NSABP B-24 demonstrated that tamoxifen 20 mg daily for 5 years following lumpectomy and radiation therapy led to a significant reduction in recurrence (in-situ or invasive) compared with placebo. As discussed in Section 2, the TAM-01 trial, in which 69% of participants had DCIS, showed a 42% reduction in breast cancer events and a 64% reduction in contralateral breast cancers with tamoxifen 5 mg.

Anastrozole, however, was superior to tamoxifen 20 mg in the NSABP B-35 trial: It produced a better breast cancer free interval (BCFI) and disease-free survival (DFS) in women diagnosed with DCIS, but this superiority was limited to women aged <60 years. Tamoxifen was associated with a higher risk of VTE. Despite the benefits of anastrozole, however, overall survival (OS) did not differ between the two arms. IBIS-II-DCIS, which also randomized patients with DCIS to tamoxifen or anastrozole, showed noninferiority, but not superiority, of anastrozole.

In women who undergo bilateral mastectomies for DCIS, adjuvant endocrine therapy is not usually recommended.
Section 3B – Hormone Receptor Positive Invasive Breast Cancer

Endocrine therapy is indicated for anyone with HR+ invasive disease. It’s reasonable, however, to consider omission of endocrine therapy for patients with T1a N0 tumors or for women with favorable pure tubular, mucinous, and cribriform histologies and encapsulated or solid papillary carcinoma33.

Broadly, endocrine therapy options include tamoxifen or an AI—as with DCIS, raloxifene is not used in the therapeutic setting.

Premenopausal HR+ IBC

Tamoxifen is the only option for premenopausal women in the absence of OFS. Most premenopausal patients who take adjuvant tamoxifen for 5 years are likely to benefit from extended therapy with additional tamoxifen or a transition to an AI, depending on menopause status (length of therapy is discussed in Section 3D). Genomic testing (see Section 5) can be used to help guide this decision.

Premenopausal women may have cessation of menses with chemotherapy; these patients should be treated with tamoxifen until it is clear that they will not resume ovarian function. Menopause may be assessed with laboratory studies (i.e. luteinizing hormone, follicle-stimulating hormone [FSH], and estradiol), but tamoxifen may affect FSH, and these hormones fluctuate throughout perimenopause. A single set of labs is therefore inadequate for confirming menopausal status33.

Some premenopausal patients benefit from OFS, whether they transition to an AI or remain on tamoxifen. SOFT (Suppression of Ovarian Function Trial)37 randomized premenopausal women to tamoxifen, tamoxifen plus OFS, or exemestane plus OFS. At a median follow-up of 12 years, DFS was significantly better with tamoxifen plus OFS versus tamoxifen (hazard ratio [HR] 0.82; 95% CI 0.69-0.98). Overall survival was 86.8% with tamoxifen, 89.0% with tamoxifen plus OFS (HR versus tamoxifen alone 0.78; 95% CI 0.60-1.01), and 89.4% with exemestane plus OFS. The impact of OFS was most pronounced with higher risk disease.

In TEXT (Tamoxifen and Exemestane Trial)38, patients were randomized to tamoxifen plus OFS or exemestane plus OFS. Exemestane plus OFS produced superior 12-year DFS versus tamoxifen plus OFS (12-year DFS HR 0.79; 95% CI 0.70-0.90), but not OS (HR 0.93; 95% CI 0.78-1.11). The DFS benefit was most pronounced in women at higher risk for recurrence (age <35 years, tumors >2 cm, or high grade tumors).

Side effects, including hypertension and impaired glucose control, were more frequent with the use of OFS. Importantly, osteoporosis impacted 3.9% of tamoxifen patients in SOFT versus 7.2% of those receiving tamoxifen plus OFS and 14.8% of those receiving exemestane plus OFS. Vaginal dryness and dyspareunia were most frequent with exemestane plus OFS37,38.
Postmenopausal HR+ IBC

Postmenopausal patients with HR+ breast cancer are usually managed with an AI, taken for at least 5 years. Tamoxifen is an option for postmenopausal patients unable to tolerate or unwilling to take an AI. Additional information comparing tamoxifen with AIs is discussed in Section 3D, which also discusses the length of endocrine therapy.

Postmenopausal patients with IBC should also be offered bone directed therapy with bisphosphonates (see Section 3F).

Section 3C – Neoadjuvant Endocrine Therapy

For patients with HR+, HER2 negative disease, neoadjuvant chemotherapy offers several benefits, including assessment of treatment response, improving rates of successful breast conservation, and limiting the extent of axillary surgery. For patients with no clear indications for neoadjuvant chemotherapy, neoadjuvant endocrine therapy (NET) may provide similar benefits. In addition, NET may bridge the time from diagnosis to surgery (e.g. to allow for reconstruction planning, smoking cessation or genetic testing, or as was needed during the pandemic). While NET trials often treated patients for 3-6 months preoperatively, there is no consensus on the ideal length of NET.

For postmenopausal patients with strongly ER+ tumors, neoadjuvant AI therapy is superior to neoadjuvant tamoxifen and is associated with less toxicity than neoadjuvant chemotherapy. In a meta-analysis of 20 studies comparing neoadjuvant therapy regimens, AIs produced a similar clinical response rate, radiological response rate, and breast conserving surgery (BCS) rate to those seen with neoadjuvant chemotherapy, while producing a higher clinical response rate, radiological response rate, and BCS rate than neoadjuvant tamoxifen. Pathologic complete responses, however, are uncommon. There are limited data on the use of NET in premenopausal women, so no consensus guideline currently recommends against off-trial NET for that population.

Several NET clinical trials assessed ki-67 on a repeat core biopsy after a period of endocrine therapy. Patients with a starting ki-67 <10% do well with endocrine therapy alone and repeating the ki-67 after a period of NET does not add prognostic information. For those with a higher starting ki-67, however, a decrease in ki-67 is prognostic. For patients treated with NET, the preoperative endocrine prognostic index (PEPI) score calculated at surgery is prognostic. Patients with a PEPI score of 0 (defined as ypT1/2, ypN0, ki-67 <2.7%, and ER Allred score of 3-8) have a low risk of recurrence with endocrine therapy alone.

Due to lack of prospective data, consensus guidelines do not currently recommend using ki-67 or PEPI score for directing patient management. An ongoing clinical trial is assessing the use of ki-67 and 21-gene Recurrence Score to direct systemic therapy decisions in pre- and postmenopausal women.
Section 3D – Length of endocrine therapy

In 1998, a meta-analysis of 55 trials compared adjuvant tamoxifen with no tamoxifen47. For patients with ER+/ER unknown tumors, one year of tamoxifen reduced recurrence by 21%, 2 years by 29%, and 5 years by 47%. Mortality and contralateral breast cancers were similarly reduced. This effect was not seen in patients with ER negative disease. Although both node negative and node positive patients benefitted, the latter benefited most.

NSABP B-14 participants (all node negative) who were randomized to tamoxifen (versus placebo) for the first 5 years of endocrine therapy were re-randomized to tamoxifen or placebo for an additional 5 years. Five years of tamoxifen produced better DFS, recurrence free survival (RFS), and OS compared with extended therapy48. The consensus was to recommend 5 years of tamoxifen outside a clinical trial.

Unfortunately, many ER+ cancers recur years after a patient completes a 5-year course of endocrine therapy. Patients at a higher recurrence risk, such as those with positive nodes, larger tumors, or who need chemotherapy, do benefit from extended endocrine therapy. Reducing the risk of second breast cancers explains some of the benefit of continuing endocrine therapy. There is, however, a paucity of data showing an OS benefit with extended endocrine therapy.

An American Society of Clinical Oncology (ASCO) Clinical Practice Guideline49 included a systematic review on the optimal duration of endocrine therapy; key studies are summarized in Table 2.

Trials evaluating 5 years of tamoxifen following 5 years of tamoxifen

In addition to NSABP B-14, 2 other trials evaluated the benefit of continuing tamoxifen for an additional 5 years—ATLAS50 and ATTOM51. Both showed better DFS, breast cancer specific survival (BCSS), and OS with extended tamoxifen therapy, but more PEs and endometrial cancers.

Trials evaluating an AI following tamoxifen

- In MA.1752 letrozole started after 5 years of tamoxifen reduced recurrence by 43% versus placebo at an interim analysis. The trial was unblinded and participants randomized to placebo were offered letrozole. Extended letrozole improved DFS and, for node positive patients, improved OS.
- NSABP B-3353 randomized patients to exemestane or placebo. Based on the unblinding of MA.17, this trial was also unblinded and placebo group patients were offered exemestane. Extended therapy reduced recurrences by 32%. Patients most likely to benefit were younger, had larger tumors, were node positive, received prior chemotherapy (so had higher risk disease), and were both ER+ and PgR+.
• The ABCSG 6A trial54 compared 3 years of anastrozole with no further therapy following 5 years of tamoxifen, in effect comparing 5 with 8 years of endocrine therapy. The extension improved DFS because of a reduction in distant metastasis.

• The Italian GIM-4 trial55 compared an additional 2 or 3 with 5 years of letrozole following 2-3 years of tamoxifen. Extended therapy reduced recurrences at 12 years (DFS 67\% versus 62\%; HR 0.78; 95\% CI 0.65-0.93).

• DATA56 similarly compared 3 versus 6 years of anastrozole following 2-3 years of tamoxifen. There was a numeric but not statistically significant advantage to extended therapy. For patients with tumors that were both ER+ and PgR+, however, DFS was significantly improved.

\textbf{Trials evaluating extended AI therapy}

• In NSABP B-4257, patients who received 5 years of endocrine therapy (primarily an AI) were randomized to 5 years of letrozole or placebo. Extended therapy improved DFS, especially for patients who received tamoxifen as part of their initial regimen, and reduced recurrences without increasing the risk of fracture.

• MA.17R58 participants were randomized to 5 years of letrozole or placebo following 5 years of an AI. Most study participants received tamoxifen for 5 years prior to starting their 5-year course of AI therapy, however, so MA.17R essentially compared a total 10 to 15 years of endocrine therapy. Ten years of an AI (a total of 15 years of endocrine therapy) improved DFS and reduced contralateral breast cancers, but did not change OS, and fractures were more common even though over half of those patients were on a bisphosphonate.

In the IDEAL, ABCSG 16 and SOLE trials, all patients received 5 years of endocrine therapy, which usually included an AI, but study dosing schedules during years 5-10 differed.

• The IDEAL trial59 showed that 7.5 years of endocrine therapy produced equivalent recurrence risk to that with 10 years. Second primary breast cancer events were higher, however.

• Similarly, ABCSG 1660 compared an additional 2 versus 5 years of anastrozole, essentially comparing 7 with 10 years of endocrine therapy, and did not show superiority with a longer therapy regimen. As in MA.17R, fractures were more common, despite equivalent use of bone-targeted therapy.

• Participants in the SOLE trial61 were node positive, so presumed to benefit from extended therapy; all received letrozole during years 6-10. During the first four years of the trial (endocrine therapy years 6-9), participants took letrozole for 9 months on, 3 months off. During the last year of the study (endocrine therapy year 10), they took letrozole continuously. Using the intermittent regimen did not significantly impact DFS, OS, or adverse events.

Collectively, these studies show that patients most likely to benefit from extended therapy are those with high risk, node positive disease, but there is not yet robust data
showing a significant improvement in OS. Patients taking tamoxifen for 5 years likely benefit from additional endocrine therapy with either another 5 years of tamoxifen or 2-5 years of an AI. ASCO49 therefore recommends that anyone with node positive disease be offered 10 years of endocrine therapy. Node negative patients without other high risk features, like grade 3 disease, likely only need 5 years, and there is no role for extending endocrine therapy beyond 10 years.

Genomic assays (primarily Breast Cancer Index [BCI], discussed in Section 5) provide additional guidance regarding the potential benefit of extended endocrine therapy.

Section 3E – Special populations

Desire for pregnancy

For many women, a 5-year course of tamoxifen impacts their ability to conceive and carry a pregnancy to term. In these situations, an interruption in endocrine therapy can be entertained.

The POSITIVE62 (Pregnancy Outcome and Safety of Interrupting Therapy for Women with Endocrine Responsive Breast Cancer) trial followed premenopausal women who received 18-30 months of endocrine therapy prior to stopping to attempt pregnancy. There was no significant difference in recurrence risk compared with a matched cohort from the SOFT/TEXT trials (HR 0.81; 95% CI 0.57-1.15). Additionally, the low rate of birth defects (2.2%) was similar to that in the general population.

At least 18 months of tamoxifen is recommended prior to trying to conceive, preferably 2 years. Tamoxifen is potentially teratogenic and should be stopped 2-3 months prior to attempted conception.

Primary endocrine therapy in the frail or elderly

After the age of 70 years, the percent of breast cancers that are ER+ rises63. Patients older than 80 years present with higher stage breast cancer than those aged 65-75 years, presumably due to cessation of routine screening64. In these patients, NET may allow downstaging of the disease, while primary endocrine therapy may itself be a reasonable option in those with comorbid conditions and poor functional status.

Studies comparing up-front surgery with tamoxifen have shown superior DFS or PFS with surgery, but little difference in OS65-68. In an observational study69, for women aged 70 years and older treated with either primary endocrine therapy (tamoxifen or an AI) or with surgery, 5-year OS and BCSS were similar. In fact, most women died from non-breast cancer causes, especially with increasing age. Eventual progression rate was 45.0% and the median time to progression was 49 months. BCSS was better for patients under age 80 undergoing primary surgery (versus primary endocrine therapy) but this was not
true for those 80 years of age and older. Most of the studies evaluating primary endocrine therapy in elderly women used tamoxifen, but an AI is likely superior given higher response rates.

Online tools assess frailty and treatment-related morbidity and may guide therapy. These include the Cancer and Aging Research Group Chemotherapy Toxicity Tool, mortality calculators at ePrognosis, and the American College of Surgeons Surgical Risk Calculator.

Male breast cancer

Male breast cancer accounts for about 1% of all breast cancers. In general, therapy recommendations are extrapolated from the treatment of female breast cancer. Therapy options mirror those for female patients.

Tamoxifen is the preferred endocrine therapy for males with HR+ disease; when tamoxifen is contraindicated, AIs—only with a gonadotropin-releasing hormone (GnRH) analog—are an option.

Section 3F – Indications for the Addition of Non-Endocrine Therapies

Bone-directed therapy

Patients who are postmenopausal (natural or chemotherapy-induced), on AI therapy, and/or receiving OFS are at risk for osteopenia, osteoporosis, and fragility fracture. The use of bone-modifying agents to mitigate these adverse events is discussed in Section 5E.

Separate from maintaining bone density, studies have shown that bisphosphonates (zoledronic acid [ZA], ibandronate, or clodronate) reduce the risk of disease recurrence (primarily in the bone) while improving BCSS and OS in postmenopausal women. Per ASCO, all postmenopausal patients with IBC (regardless of ER or HER2 status) and eligible for systemic therapy should be offered one of these 3 bisphosphonates.

Predict provides an estimate of the absolute benefit of adding bisphosphonate therapy. The absolute benefit for most women, however, is small, and the National Comprehensive Cancer Network (NCCN) recommends bisphosphonates only for postmenopausal women with node positive or high risk, node negative disease (regardless of receptors). Two years of zoledronic acid is noninferior to 5 years.

Cyclin Dependent Kinase 4/6 Inhibitors (CDK4/6i)

Patients with advanced or high risk disease may benefit from the addition of a CDK4/6i to endocrine therapy. Based on improved invasive DFS in the MONARCH-E trial, the FDA approved abemacliclib in combination with endocrine therapy for HR+, HER2
negative, node positive early stage breast cancer at high risk of recurrence. Ribociclib and palbociclib, in combination with an AI or fulvestrant, are approved for advanced and metastatic HR+, HER2 negative breast cancer79,80.
Treatment of HR+ breast cancer with endocrine therapy is the standard of care. Depending on recurrence risk, many patients also receive chemotherapy. Traditional risk factors for recurrence include large tumor size, node disease, and higher grade. Management of systemic therapy has since evolved, and tumor biology is a key determinant of this decision.

Genomic tumor assays reflect biology and provide additional information regarding prognosis and the potential benefit of chemotherapy. Appropriate use of genomic testing by the breast surgeon can reduce unnecessary treatment delays and identify patients who may or may not benefit from neoadjuvant chemotherapy. When using genomic testing to choose between neoadjuvant chemotherapy and endocrine therapy, testing needs to be performed on the core biopsy specimen; these results are largely consistent with those from a surgical specimen81.

The use of genomic assays to guide systemic therapy recommendations is limited to patients with HR+, HER2 negative, N0 or N1 disease. Current NCCN guidelines33 recommend consideration of genomic testing (specifying the 21-gene Recurrence Score) for postmenopausal patients with tumors >5 mm in size with up to 3 positive nodes and who are candidates for chemotherapy, and for premenopausal patients with node negative tumors measuring 6 mm or larger. Patients with T1b lesions (6-10 mm) with low risk features (grade 1 disease, no lymphovascular invasion), however, can be managed with endocrine therapy alone, as these patients were not included in the TAILORx trial.

Consensus guidelines discuss 4 commercial genomic assays: Oncotype DX 21-gene Recurrence Score, MammaPrint, Prosigna, and EndoPredict for chemotherapy decision making33,82.

4A. Oncotype DX

The Oncotype DX 21-gene Recurrence Score (RS), which ranges from 0-10083, is prognostic for the risk of distant recurrence, but additionally can predict the benefit of chemotherapy. Postmenopausal patients with a RS ≥26 should receive chemotherapy in addition to endocrine therapy; postmenopausal women with T1b or larger and N0 or N1 disease and for whom genomic testing was not performed may receive chemotherapy in addition to endocrine therapy or endocrine therapy alone.

Premenopausal patients with a RS ≤15 should receive endocrine therapy with or without OFS. Guidelines recommend either chemotherapy plus endocrine therapy or endocrine therapy with or without OFS for premenopausal patients in whom the 21-gene RS was not performed or for those with a RS of 16-25. Chemotherapy is recommended for patients with a RS of 26 or higher.
TAILORx (Trial Assigning Individualized Options for Treatment)84 enrolled patients with HR+, HER2 negative, node negative breast cancer. Those with a RS \leq10 received adjuvant endocrine therapy and those with a RS \geq26 received both chemotherapy and endocrine therapy. Roughly 70% of the total cohort had a RS 11-25, and these participants were randomized to endocrine therapy alone or both chemo- and endocrine therapy. Endocrine therapy alone was noninferior to the combination of chemo- and endocrine therapy for invasive disease-free recurrence, second primary breast cancer, freedom from distant recurrence, and OS in women over 50. For participants \leq50 years of age and with a RS 16-25, however, the addition of chemotherapy did lower the risk of distant recurrence.

A 12-year follow-up85 presented in 2022 confirmed these results: invasive DFS was 75.9% for those with a RS \leq10, 76.8% for those with a mid-range RS randomized to endocrine therapy alone, 77.4% for those with a mid-range RS randomized to chemo-endocrine therapy, and 65.9% for those with a RS $>$26 and treated with both chemo- and endocrine therapy. OS ranged from 87.0% in the high risk group to 89.8% in the other 3 groups. The update also showed that, for women with low RSs and treated with endocrine therapy alone, recurrence was more common after 5 years than in the initial 5 years; women with high RSs had a high risk of recurrence despite the addition of chemotherapy; Black women were more likely to experience recurrence during the first 5 years (but not after that).

Black race was also associated with worse OS in the RS 11-25 cohort (HR 1.51; 95% CI 1.06-2.15) and the entire population (HR 1.41; 95% CI 1.05-1.90). There was no evidence of chemotherapy benefit for any racial or ethnic group in those with a RS of 11-25. Black women were also significantly younger, more likely premenopausal, and had higher grade disease, larger tumors, and higher clinical risk scores86. A retrospective review of SEER data87 also showed that Black women were more likely than White women to have high RSs; node negative Black women had higher breast cancer-specific mortality than node negative White women across RSs.

The RxPonder Trial reported that in postmenopausal women with N1 disease and a RS $<$25, there was no benefit from the addition of chemotherapy to endocrine therapy, with 5-year invasive DFS of 91.9% in the endocrine-only group and 91.3% in the chemo-endocrine group. For premenopausal women in RxPonder, however, invasive DFS at 5 years was 89.0% with endocrine-only therapy but 93.9% with chemo-endocrine therapy88.

A retrospective analysis of the randomized, prospective SWOG 8814 trial showed no DFS advantage with the addition of chemotherapy to tamoxifen for patients with T1-3 N1-2 (excluding clinical N2 disease), HR+ breast cancer and a RS $<$18. The RS did, however, predict a DFS benefit with chemotherapy for those with a RS \geq3189.

4B. MammaPrint

MammaPrint® is a 70-gene assay that predicts the risk of distant recurrence in both node negative and node positive patients90. The MINDACT (Microarray in Node-Negative and
1 to 3 Positive Lymph Node Disease May Avoid Chemotherapy) trial enrolled patients with T1-3 N0-1 breast cancer. Clinical risk for distant recurrence was assessed using a modified Adjuvant! Online® algorithm (which incorporated ER and HER2 status, tumor size and grade, and node status).

MINDACT91 showed that the use of chemotherapy did not significantly reduce distant recurrence in patients with HR+, HER2 negative breast cancer with high clinical risk but low genomic risk. Five-year distant metastasis-free survival (DMFS) was 95.9\% (95\% CI 94.0-97.2) for participants in this cohort randomized to chemotherapy versus 94.4\% (95\% CI 92.3-95.9) for those randomized to no chemotherapy. Participants who were low risk by both clinical features and Mammaprint had a 5-year distant metastasis free survival (DMFS) of 97.6\% (95\% CI 96.9-98.2) with endocrine therapy alone. For those at high risk by both clinical and genomic assessment, all of whom received chemotherapy, 5-year DMFS was 90.9\% (95\% CI 88.0-93.2). Distant recurrence for participants with clinical high risk but low genomic risk (including those with 1-3 positive nodes) did not improve with the use of chemotherapy. Updated analysis92 showed that for women \(\leq 50 \) years of age with HR+, HER2 negative disease, with high clinical risk and regardless of genomic risk, chemotherapy improved DMFS by 5\%, with the caveat that this was an underpowered exploratory analysis.

For the population of women with low clinical risk, who did not benefit from chemotherapy regardless of genomic MammaPrint risk, ASCO recommends against its use. Similarly, ASCO recommends against it for patients \(\leq 50 \) years of age with high clinical risk, N0 or N1 disease because they do benefit from chemotherapy. It may, however, inform adjuvant therapy decisions for patients \(>50 \) years of age with high clinical risk (N0 or N1)82.

Up to 15\% of early stage breast cancers in the MINDACT trial fell into an UltraLow Risk category93. The UltraLow category was defined using several clinical trial cohorts. Approximately 70\% of these patients were ER+, but most did not receive systemic endocrine or chemotherapy. Regardless, these patients had 100\% BCSS by year 2094. The Stockholm tamoxifen (STO-3) trial95 randomized participants with tumors \(\leq 3 \) cm, N0, to 2 years of tamoxifen or no additional therapy; those who were disease-free after 2 years of tamoxifen were randomized to no additional therapy or 3 additional years of tamoxifen. Participants with an UltraLow MammaPrint result had 97\% or 94\% BCSS at 20 years with 2-5 years versus no tamoxifen, respectively. Guidelines do not yet, however, recommend using this category to abbreviate the length of adjuvant endocrine therapy33,82.

4C. EndoPredict

EndoPredict® combines a 12-gene RT-PCR assay with tumor size and nodal status to determine the EPclin, a score reflecting the likelihood of distant recurrence at 10 years of ER+, HER2 negative disease with up to 3 positive nodes96,97. Patients with a score <3.3 are at low risk for recurrence, and those with a score \(\geq 3.3 \) are at high risk. Testing can be performed at decentralized labs. The prognostic capability has been validated in both pre-
and postmenopausal women. Indirect comparisons98 suggest that the EndoPredict genomic assay and EPclin can predict benefit with adjuvant chemotherapy and with neoadjuvant chemo- and endocrine therapy.

In patients disease-free at 5 years and after adjusting for clinical risk factors, EPclin is a significant predictor of recurrence at 5-15 years (HR 2.56; 95% CI 1.88–3.49), regardless of node status (with the caveat that a small number of participants had 15-year follow-up)99. EPclin impacts clinical decisions regarding extended endocrine therapy100 but there is not yet data showing that it can predict the benefit of extended therapy.

4D. ProSigna

ProSigna is a 50-gene signature that assigns an intrinsic subtype and, along with tumor size, node status, and proliferation score, assigns a low, intermediate, or high Risk of Recurrence score101. It provides prognostic information for distant recurrence at 10 years for patients with HR+, HER2 negative disease with up to 3 positive nodes. This may impact decisions for chemotherapy or extended endocrine therapy.
Section 5 – Genomic Tumor Evaluation of Hormone Receptor-Positive, HER2 Negative Breast Cancer to Guide Extended Endocrine Therapy

5A. Breast Cancer Index

The Breast Cancer Index (BCI) is a combination of two diagnostic tests—a prognostic Molecular Grade Index and a predictive 2-gene HOX/IL17BR ratio index (H/I), which represents endocrine sensitivity. It estimates late distant recurrence risk for an individual patient, while assessing the potential impact of extended endocrine therapy on that late recurrence risk.

Its predictive value was validated with data from several prospective trials, including the translational-aTTom (Trans-aTTom) study, which randomized patients to 5 or 10 years of tamoxifen. Node positive patients who were BCI (H/I)-High had a significantly better recurrence free interval with 10 years of tamoxifen (HR 0.33; 95% CI 0.14–0.75). DFS was also significantly better for those who were BCI (H/I)-High. The BCI similarly predicts the benefit of extended endocrine therapy in node negative patients and with AIs as well. It may guide extended therapy decisions in patients with ER+ disease, with 0-3 positive nodes, and who are recurrence-free after 5 years of endocrine therapy.
Section 6 – Side Effect Management of Endocrine Therapies

Many of the endocrine therapies have overlapping side effects such as hot flashes, vaginal atrophy, and hair thinning. The management of these symptoms is the same regardless of which drug is responsible for the side effect.

6A. Vasomotor Symptoms

Vasomotor symptoms (VMS) are common in menopausal patients and those on endocrine therapy. The most effective treatment is hormone replacement therapy, which is contraindicated in women on endocrine therapy or with a personal history of breast cancer. The 2023 Nonhormone Therapy Position Statement of The North American Menopause Society (NAMS) summarizes the data on multiple therapies.

What does work?

- Gabapentin (dose range 900-2400 mg/day; starting dose 100-300 mg at night)
- Venlafaxine (dose range 37.5-150 mg/day; starting dose 37.5 mg/day)
- Desvenlafaxine (dose range 100-150 mg/day; starting dose 25-50 mg/day)
- Paroxetine (dose range 10-25 mg/day; starting dose 10 mg/day) is approved for managing VMS, but may interfere with tamoxifen metabolism through the CYP2D6 metabolic pathway
- Citalopram (dose range 10-20 mg/day; starting dose 10 mg/day)
- Escitalopram (dose range 10-20 mg/day; starting dose 10 mg/day; starting dose 5 mg/day for elderly patients)
- Oxybutynin (dose range 2.5-5 mg twice daily)
- Fezolinetant is a neurokinin 3 (NK3) receptor antagonist recently approved by the FDA to treat moderate to severe hot flashes (dose 45 mg/day)
- Cognitive behavioral therapy
- Weight loss

What does not work?

- Traditional patient counseling has included advice to avoid triggers, such as alcohol, caffeine, spicy foods, hot showers or rooms, and smoking. However, there is no evidence that these behavioral changes reduce VMS.
- Similarly, there is no high-quality data showing a benefit with over-the-counter supplements, such as soy-based formulas, black cohosh, wild yam, red clover, and pollen extract. Studies suggesting a benefit are small and safety data is lacking. None are recommended by the North American Menopause Society. There is also concern for drug interactions through the P450 CYP2D6 enzyme system for women taking tamoxifen.
- Studies have not shown a significant benefit with traditional acupuncture, but data is promising for electroacupuncture.
• While exercise is important for overall health, no specific activity has been shown to impact VMS.
• While clonidine may reduce VMS, it is less effective than other prescription therapies and may cause hypotension or, when the drug is stopped, hypertension. The NAMS therefore does not recommend it.

6B. Thromboembolic Events

Tamoxifen is not formally contraindicated for patients with a coagulopathy (such as Protein C or S deficiency or Factor V Leiden) in the absence of a personal history of DVT/PE or anticoagulation requirement. It is important, however, to balance risks and benefits. The risk of VTE may outweigh potential benefit, for instance, in women using tamoxifen for risk reduction; the opposite may be true for women with invasive disease using tamoxifen as protection from disease recurrence (especially those who are not AI candidates). Although not a contraindication, tobacco use further increases the risk of VTE110.

VTE Risk Reduction

• The half life of tamoxifen is 5-7 days, but the half life of one of its metabolites (N-desmethyltamoxifen) is 14 days111.
• Patients aged 60 years and older, obese patients, and those with a family history of VTE should consider stopping tamoxifen up to 3 weeks before prolonged immobilization (e.g. surgery >90 minutes in duration or with expected postoperative immobilization)111,112.
• The half life of raloxifene is 27.7-32.5 hours; to reduce the risk of VTE in situations with increased risk, patients should consider stopping raloxifene 72 hours ahead of time2.

6C. Endometrial hyperplasia, polyps, and cancer

Patients who are receiving or have received tamoxifen and who retain their uterus should undergo annual gynecologic exams. Any change in menstrual bleeding and any postmenopausal vaginal bleeding should prompt a gynecologic evaluation, uterine ultrasound, and possible endometrial biopsy. In the absence of bleeding change or abnormalities, there is no role for routine ultrasound or endometrial biopsies to monitor the endometrium33.

6D. Vaginal Atrophy/Dyspareunia

Estrogen deprivation results in thin, friable vaginal and vulvar tissue, resulting in tears and fissures, frequent urinary tract infections, dyspareunia, and shortening of the vagina.
Women should avoid potential irritants and regularly use vaginal moisturizers; options include coconut oil and hyaluronic acid products. If these are inadequate, patients can consider vaginal estrogen or dehydroepiandrosterone (DHEA).

While one longitudinal study showed increased breast cancer recurrence risk with vaginal estrogen for women on AIs, most data show no impact on cancer recurrence or circulating estrogen levels. The preparation and application of vaginal estrogen can impact systemic absorption. Higher systemic absorption is seen with creams (which are applied to a larger area, versus vaginal tablets or rings), application in the upper 2/3 of the vagina (versus the lower third), and with poorer tissue quality (versus estrogenized tissue which results from regular use of vaginal estrogen). The lowest systemic absorption is seen with 10 mcg estradiol tablets and estradiol vaginal rings.

Estrogen deprivation-related changes in pelvic anatomy can be addressed with vaginal dilators, biofeedback, and pelvic floor physical therapy.

Lubricants are used on an as-needed basis for sexual intercourse and can be water-, silicone-, or oil-based. Patients using condoms for contraception or infection prevention should confirm compatibility between their lubricant and condom material.

6E. Osteopenia/Osteoporosis

Tamoxifen can cause bone loss in premenopausal patients, but OFS and AIs are the most significant threat to bone density in women on endocrine therapy. Decreased bone density and bone quality leading to fractures is a common complication of AI therapy.

Risk factors for osteoporotic fracture include advanced age, postmenopausal status, low body weight, current tobacco use, heavy alcohol use, history of long-term glucocorticoid use, history of nontraumatic fracture, increased fall risk, immobility, rheumatoid arthritis, and parental hip fracture. Patients with any of these risk factors need bone mineral density (BMD) assessment. Although not validated in cancer patients, tools like FRAX can assess fracture risk in osteopenic patients, identifying those who should receive bone-protective therapy based on clinical fracture risk.

Patients on AI therapy or OFS should undergo BMD at baseline and at least every 2 years. All patients should be encouraged to consume adequate amounts of calcium and vitamin D, to minimize tobacco and alcohol use, and to engage in balance, flexibility, and weight-bearing exercise as patient status allows.

In general, bone-protective therapy is indicated for patients on AIs/OFS and with:

- Frank osteoporosis (T-score ≤ 2.5 standard deviations or any T-score with a history of fragility fracture),
- Osteopenia and risk factors for fracture (use a higher T-score threshold for patients with multiple risk factors),
- FRAX 10-year major osteoporotic fracture risk of \(\geq 20\% \), or
- FRAX 10-year hip fracture risk \(\geq 3\% \).33,120,122,123

Drugs of choice to protect bone health include bisphosphonates (e.g. risedronate, ibandronate, and ZA) and denosumab, a RANK-L inhibitor. Denosumab dosage is 60 mg subcutaneously every 6 months. In the oncology setting (to reduce cancer recurrence), ZA dosage is 4 mg IV every 6 months for 3 years or 4 mg every 3 months for 2 years; osteoporosis dosing is 5 mg IV annually. While bisphosphonates offer cancer-specific benefits (discussed in Section 3F), protect bone density, and may reduce fractures in premenopausal women, more robust data support denosumab for fracture prevention in postmenopausal women75,120.

ZA may cause a flu-like reaction; both ZA and denosumab can cause osteonecrosis of the jaw. Although this is rare, patients with poor dentition or oral hygiene may be poor candidates for these therapies. ZA has been associated with rare, atypical femur fractures, while cessation of denosumab leads to increased bone turnover and vertebral fracture risk; patients should be transitioned to a bisphosphonate when stopping denosumab to prevent this75,120,122,123.

As discussed above, bisphosphonates should be offered to all postmenopausal women with invasive breast cancer, independent of bone density, based on a reduced risk of cancer recurrence75.

6F. Musculoskeletal Complaints

Although SERMs may cause myalgias and arthralgias, arthralgias are common in patients taking an AI. AIs may also contribute to the development of carpal tunnel syndrome or trigger finger. The etiology is unclear but may include inflammatory changes in the joints124.

Acetaminophen and NSAIDs are useful as-needed treatments. Patients experiencing carpal tunnel syndrome or trigger finger may need wrist splints or joint or tendon injections. Clinical trials have demonstrated the effectiveness of acupuncture and duloxetine for managing AI-related arthralgias125. Data suggest that exercise, including yoga, may reduce arthralgias while improving quality of life. Omega 3 fatty acid supplementation may be effective for treating arthralgias, but this benefit may be limited to obese women126. Data are mixed regarding vitamin D supplementation. For many patients, a short AI holiday followed by a switch to a different AI will lead to fewer arthralgias.

6G. Weight Gain

Weight gain after breast cancer treatment is common; unfortunately, higher body mass index is associated with poorer breast cancer-specific outcomes127. The reasons for weight gain are multifactorial and include receipt of chemotherapy, receipt of endocrine
therapy, postmenopausal status, reduced physical activity, chronic inflammation, and disrupted sleep. Premenopausal women are at higher risk for treatment-associated weight gain than postmenopausal women, as are women who were obese prior to their breast cancer diagnosis, although studies show inconsistent results128,129.

Similarly, studies evaluating interventions to manage weight in breast cancer patients show inconsistent results. Current data suggest that dietary and/or physical activity interventions are the most successful. Other interventions include cooking classes and counseling130-132. The Breast Cancer Weight Loss (BWEL) trial133 showed that a telephone-based weight loss intervention led to a significant mean 4.8\% (±7.9) decrease in body weight at 12 months versus a 0.8\% (±6.4) weight gain in controls. Similarly, the InForma trial132 showed that more participants randomized to a dietary intervention with or without a physical activity intervention lost at least 5\% body weight versus participants randomized to a physical activity only intervention or minimal intervention; this weight loss persisted at 12 and 24 months.
Table 1. Randomized clinical trials evaluating endocrine therapy agents for breast cancer risk reduction

<table>
<thead>
<tr>
<th>Trial</th>
<th>Treatment arms (n)</th>
<th>Follow-up (years)</th>
<th>Characteristics</th>
<th>Primary endpoint</th>
<th>BC outcomes RR/HR (95% CI)</th>
<th>Other events RR/OR/HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSABP-P112,21</td>
<td>A: Tamoxifen (6681) B: Placebo (6707)</td>
<td>7</td>
<td>Age ≥35 years with 5-year BC risk ≥1.66%* or with LCIS or Age ≥60 years</td>
<td>IBC</td>
<td>IBC RR 0.57 (0.46-0.70)</td>
<td>EndoC RR 3.28 (1.87-6.03); PE RR 2.15 (1.08-4.51); DVT RR 1.44 (0.91-1.34)</td>
</tr>
<tr>
<td>IBIS-I20</td>
<td>A: Tamoxifen (3579) B: Placebo (3575)</td>
<td>16</td>
<td>Age 35-70 years with increased risk</td>
<td>BC</td>
<td>BC HR 0.71 (0.60-0.83); DCIS HR 0.65 (0.43–1.00)</td>
<td>EndoC OR 3.76 (1.20-15.56); DVT OR 1.87 (1.11-3.18); CVA/CV NS</td>
</tr>
<tr>
<td>Royal Marsden19</td>
<td>A: Tamoxifen (1250) B: Placebo (1244)</td>
<td>13</td>
<td>Age 30-70 years with a family history</td>
<td>IBC</td>
<td>IBC HR 0.78 (0.58-1.04); ER+ IBC HR 0.48 (0.29-0.79)*</td>
<td>EndoC, VTE, stroke NS</td>
</tr>
<tr>
<td>Italian22</td>
<td>A: Tamoxifen (2700) B: Placebo (2708)</td>
<td>11</td>
<td>Age 35-70 years and s/p hysterectomy</td>
<td>BC</td>
<td>BC RR 0.84 (0.60-1.17); BC RR for high risk women 0.24 (0.10-0.59)</td>
<td>VTE RR 1.63 (1.02-2.62); CVA RR 1.78 (0.70-4.52)</td>
</tr>
<tr>
<td>TAM-0124</td>
<td>A: Tamoxifen 5 mg (253) B: Placebo (247)</td>
<td>9.7</td>
<td>Age <75 years with ADH, LCIS, or DCIS</td>
<td>BC</td>
<td>BC HR 0.58 (0.35-0.95)</td>
<td>EndoC, VTE NS</td>
</tr>
<tr>
<td>MORE25</td>
<td>A: Raloxifene 60 mg or 120 mg (5129) B: Placebo (2576)</td>
<td>3.5</td>
<td>Postmenopausal, with osteoporosis, Age ≤80 years</td>
<td>Vertebral fx</td>
<td>IBC RR 0.24 (0.13-0.44)</td>
<td>EndoC RR 0.8 (0.2-2.7); VTE RR 3.1 (1.5-6.2); Vertebral Fx RR 0.7 (0.50-0.80 for 60 mg)</td>
</tr>
<tr>
<td>CORE26</td>
<td>A: Raloxifene 60 mg (2725) B: Placebo (1286)</td>
<td>8</td>
<td>Extension of MORE</td>
<td>IBC</td>
<td>IBC HR 0.34 (0.22-0.50); NIBC NS</td>
<td>EndoC NS; VTE RR 2.17 (0.83-5.70) during CORE</td>
</tr>
</tbody>
</table>

* The asterisk denotes a statistically significant difference.
<table>
<thead>
<tr>
<th>Trial</th>
<th>Treatment arms (n)</th>
<th>Follow-up (years)</th>
<th>Characteristics</th>
<th>Primary endpoint</th>
<th>BC outcomes RR/HR (95% CI)</th>
<th>Other events RR/OR/HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUTH²⁷</td>
<td>A: Raloxifene (5044) B: Placebo (5057)</td>
<td>5.6</td>
<td>Postmenopausal, Age ≥55 years with CV disease or risk factors for CV disease</td>
<td>IBC and coronary events</td>
<td>IBC HR 0.56 (0.38-0.83)</td>
<td>VTE HR 1.44 (1.06-1.95); Vertebal Fx HR 0.65 (0.47-0.89); CV events NS</td>
</tr>
<tr>
<td>STAR²⁸</td>
<td>A: Tamoxifen (9872) B: Raloxifene (9975)</td>
<td>9.7</td>
<td>Postmenopausal, Age ≥35 years with 5-year BC risk ≥1.66%* or LCIS</td>
<td>IBC</td>
<td>IBC RR 1.24 (1.05-1.47) for raloxifene; NIBC RR 1.22 (0.95-1.59)</td>
<td>EndoC RR 0.55 (0.36-0.83); VTE RR 0.75 (0.60-0.93)</td>
</tr>
<tr>
<td>IBIS-II²⁹</td>
<td>A: Anastrozole (1920) B: Placebo (1944)</td>
<td>10.9</td>
<td>Postmenopausal, Age 40-70 years with 10-year risk >5%# or AH, LCIS, or DCIS</td>
<td>BC</td>
<td>BC HR 0.51 (0.39–0.66)</td>
<td>DCIS HR 0.41 (0.22–0.79); Fx OR 1.04 (0.88–1.22)</td>
</tr>
<tr>
<td>MAP.³⁰</td>
<td>A: Exemestane (2285) B: Placebo (2275)</td>
<td>3</td>
<td>Postmenopausal, Age ≥60 years or 5-year risk >1.66%* or LCIS, DCIS</td>
<td>IBC</td>
<td>IBC HR 0.35 (0.18–0.70); BC HR 0.47 (0.27–0.79)</td>
<td>Fx, CV events NS</td>
</tr>
</tbody>
</table>

* Using the National Cancer Institute Breast Cancer Risk Assessment Tool
Using the IBIS/Tyrer Cuzick risk model
Post-treatment period
* Years 0-5
Years 0-10
Table 2. Randomized clinical trials evaluating ideal length of endocrine therapy

<table>
<thead>
<tr>
<th>Trial profile</th>
<th>Study population</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial</td>
<td>Treatment arms (n)</td>
<td>Follow-up (years)</td>
</tr>
<tr>
<td>NSABP B-1487</td>
<td>A: Tamoxifen (593) x 5 yrs B: Placebo (579)</td>
<td>6.8</td>
</tr>
<tr>
<td>ATLAS50</td>
<td>A: Tamoxifen (3428) x 5 yrs B: Placebo (3418)</td>
<td>7.6</td>
</tr>
<tr>
<td>ATTOM51</td>
<td>A: Tamoxifen (3468) x 5 yrs B: Placebo (3485)</td>
<td>NR</td>
</tr>
<tr>
<td>MA.1752</td>
<td>A: Letrozole x 5 yrs (2583) B: Placebo (2587)*</td>
<td>2.5 yrs</td>
</tr>
<tr>
<td>NSABP B-3353</td>
<td>A: Exemestane x 5 yrs (783) B: Placebo (779)*</td>
<td>2.5</td>
</tr>
<tr>
<td>ABCSG 6a54</td>
<td>A: Anastrozole x 3 yrs (387) B: Placebo (469)</td>
<td>5</td>
</tr>
<tr>
<td>Trial</td>
<td>Treatment arms (n)</td>
<td>Follow-up (years)</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>GIM-455</td>
<td>A: Letrozole x 2-3 yrs (1030) B: Letrozole x 5 yrs (1026)</td>
<td>11.7</td>
</tr>
<tr>
<td>DATA56</td>
<td>A: Anastrozole x 3 yrs (955) B: Anastrozole x 6 yrs (957)</td>
<td>10.1</td>
</tr>
<tr>
<td>MA.17R58</td>
<td>A: Letrozole x 5 yrs B: Placebo</td>
<td>6.3</td>
</tr>
<tr>
<td>IDEAL59</td>
<td>A: Letrozole x 2.5 yrs (909) B: Letrozole x 5 yrs (915)</td>
<td>6.6</td>
</tr>
<tr>
<td>ABCSG 1660</td>
<td>A: Anastrozole x 2 yrs (1732) B: Anastrozole x 5 yrs (1738)</td>
<td>9.8</td>
</tr>
<tr>
<td>SOLE61</td>
<td>A: Continuous letrozole x 5 yrs (2426) B: Intermittent letrozole x 5 yrs (2425)</td>
<td>7</td>
</tr>
<tr>
<td>NSABP B-4257</td>
<td>A: Letrozole x 5 yrs (1983)</td>
<td>10.3</td>
</tr>
<tr>
<td>Trial</td>
<td>Treatment arms (n)</td>
<td>Follow-up (years)</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>B: Placebo x 5 yrs (1983)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AI – aromatase inhibitor; BC – breast cancer; CI – confidence interval; DFS – disease-free survival; EndoC – endometrial cancer; ER – estrogen receptor; Fx – fracture; HR – hazard ratio; NS – not significant; NR – not reported; OS – overall survival; PE – pulmonary embolism; PgR – progesterone receptor; RR – relative risk; Tx – treatment; Yrs – years

* Study unblinded and placebo arm participants offered active therapy

* After 5 years

* After 10 years

NA – not available
The resource guide was reviewed and approved by the Board of Directors on February 28, 2024.

Lead Author: Julie A. Margenthaler, MD, Washington University School of Medicine (no relevant disclosures)

Medical Editor: Amy Cyr, MD, Washington University (no relevant disclosures)

The Society recognizes the following members for their contributions to the development of the resource guide: Kandace McGuire, MD, Jennifer Plichta, MD, Hope Rugo, and MD, Tiffany Traina, MD.

The Society recognizes the following members for their contributions to the development of the inaugural resource guide, published August 6, 2019: Judy Boughey, MD; Nathalie Johnson, MD; Anthony Lucci, MD; Zahi Mitri, MD, Walton Taylor, MD; Carrie Thoms, MD; David Winchester, MD and Pat Whitworth, MD.

- References -

Forbes JF, Sestak I, Howell A, et al. Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised...

vasomotor symptoms associated with menopause

JNCI Cancer Spectr.

117. Pavlović RT, Janković SM, Milovanović J, et al. The safety of local hormonal treatment for vulvovaginal atrophy in women with estrogen receptor-positive breast cancer who are on adjuvant aromatase inhibitor therapy: meta-

