Validation of a Formalin-Fixed Paraffin Embedded NanoString Assay for Breast Cancer
Marie Catherine Lee, MD 1, Weihong Sun, MD 1, Jianmou Li, PhD 2, Sean Yoder, M.S. 3, Tania Mesa, M.A. 3, Dung-Tsa Chen, PhD 2

1 Breast Program, 2 Biostatistics Core, 3 Molecular Genomics Core, Moffitt Cancer Center, Tampa, FL

Introduction
- Validated breast cancer risk assessment tools do not incorporate molecular factors.
- Goal: Evaluate a 76-gene, microarray-based clinical assay (Malignancy Risk signature, MR) on a custom NanoString platform using formalin-fixed paraffin-embedded (FFPE) tissue.
- MR signature was developed from Affymetrix microarray in fresh frozen (FF) tissue and previously validated to distinguish malignant from benign FF breast and lung lesions.

Aim: Validate the use of the MR NanoString in FFPE breast tissue compared to fresh frozen (FF).

Methods
- Single-institution, IRB-approved, retrospective review of electronic medical records (EMR) and tissue/data banks for female breast cancer patients.
- Included cases:
 - Archived historical, clinical and pathological information
 - Fresh frozen benign breast and malignant tumor specimens available
 - FFPE benign breast and malignant tumor specimens available
 - Automated RNA extraction performed
 - Qubit quantification
 - Agilent TapeStation quality screening
 - Custom NanoString nCounter CodeSet for the MR signature and 18 housekeeping genes
 - Hybridizations performed in randomized FF/FFPE groups
 - NanoString cartridges scanned at 555 FOV

Statistical analysis:
- Background correction by mean+2SD of negative controls
- Normalization by geometric mean of housekeeping genes (18)
- ANOVA between endogenous and housekeeping genes
- Pearson correlation analysis of the 76 gene expression of MR in FFPE and FF cases for validation of NanoString platform

Results
- 137 NanoString Samples Processed
 - 28 cases had all 4 tissue specimens (112 NanoString)
 - 8 cases had at least 1 paired specimen (FF/FFPE tumor or FF/FFPE benign)
- Expression of 18 housekeeping genes had low variation across all samples (CV%: 17 ~23)
- No batch effect noted on ANOVA of housekeeping genes before normalization (p>0.05)
- Normal tissue had poor cellularity and low RNA yield for FF and FFPE
 - FF benign – lowest RNA yields (range 0.05ug-7.13ug; average 0.64ug)
- Pearson correlation (PC) coefficient between FF tumor and FFPE tumor was good at 0.67 (p<0.001) (Figure 1)
- Poor correlation was noted between FF normal and FFPE normal specimens at 0.25 (p = 0.228) (Figure 1)
- Across all 137 specimens, PC coefficient for MR loading coefficient was 0.99 between FF and FFPE (p < 0.001), supporting the validity of the FFPE assay compared to FF (Figure 2)

Figure 1: Correlation of PC1 for 28 paired samples

Figure 2: Correlation of MR loading for FF and FFPE

Conclusions
- Good correlation identified between FFPE and FF specimens on NanoString, validating its use in reproducing the gene signature specifically in FFPE.
- Poor correlation in benign samples is likely due to low cellularity of benign breast tissue and poor quality RNA and is a potential limitation of this approach.

References