Molecular Alterations in Secondary Breast Cancers

Amanda N. Graff-Baker MD, Javier I. J. Orozco MD, Matthew P. Salomon PhD, Dave S. B. Hoon, PhD, Melanie Goldfarb MD, and Diego M. Marzese PhD
John Wayne Cancer Institute at Providence St. John’s Health Center, Santa Monica, CA

Methods

- Breast cancer in patients with a prior history of malignancy (SBC) is associated with decreased survival compared to patients with primary breast cancer (PBC).
- Genomic and epigenomic alterations may predict prognosis and response to treatment but no such evaluation has been performed on SBCs.
- The aim of this study is to identify transcriptomic and epigenomic signatures in patients with infiltrating ductal carcinoma (IDC) and infiltrating lobular carcinoma (ILC) SBCs.

Results

IDC cohort (n=36)

- 727 significantly (P<0.05) differentially expressed genes
 - 434 upregulated genes, 105 also hypomethylated
 - 293 downregulated genes, 73 also hypermethylated

ILC cohort (n=40)

- 261 significantly (P<0.05) differentially expressed genes
 - 108 upregulated genes, 17 also hypomethylated
 - 153 downregulated genes, 46 also hypermethylated

Only 1.51% of significantly differentially expressed genes overlap between the IDC and ILC cohorts.

Background

- ER+/PR+/HER2- IDC and ILC tumors were identified in the Cancer Genome Atlas (TCGA).
- Cases of SBCs were matched 1:1 to PBC controls by age, histology, and stage.
- Differentially expressed genes were identified using RNA next-generation sequencing (RNA-seq) data.
- Genome-wide DNA methylation profiles were normalized.
- Wilcoxon rank sum test (P-value <0.01) followed by a nearest Shrunken Centroid classification algorithm was used to identify differentially methylated genomic regions with classification potential.
- DNA methylation and gene expression signatures were integrated.

Results

IDC cohort

- Upregulated and hypomethylated genes included ESR1 (estrogen receptor alpha) and TET2, involved in tumor initiation and refractory disease progression.
- Downregulated and hypermethylated genes included HLA-E, HLA-DMa, and HLA-DRB5, IRF8 (interferon signaling), and RELA (NF-κB response).

ILC cohort

- Upregulated and hypomethylated genes included DAD1 and TRIM8 (anti-apoptotic genes), and TRIM41 and UBTD1 (tags proteins for degradation).
- Downregulated and hypermethylated genes included key differentiation breast factors such as CD44 antigen.

Conclusions

- Differential gene expression and DNA methylation signatures are seen in IDC and ILC SBC.
- Genes identified in each cohort are relevant to tumor growth and proliferation.
- Differences in gene expression signatures are specific to each histological subtype, emphasizing the importance of performing disease subtype-specific evaluations of molecular alterations.
- Further studies are needed to validate these findings in a larger cohort of patients and to evaluate the impact of molecular alterations on survival.