Disclosures

USPSTF Breast Cancer Screening Guidelines in a County Hospital System: Is it time to re-evaluate screening initiation age in minority women?

Grace Lee, MS; Sonam Kapadia, MD; Albert Lee, MD; Christine Dauphine MD; Junko Ozao-Choy, MD

Poster ID# 778849 Email: Gelee@mednet.ucla.edu

We do not have relevant financial relationships with commercial interests that pertain to the content of our presentation

USPSTF Breast Cancer Screening Guidelines in a County Hospital System: Is it time to re-evaluate screening initiation age in minority women? Grace Lee, MS; Sonam Kapadia, MD; Albert Lee, MD; Christine Dauphine MD; Junko Ozao-Choy, MD

Table 2: Racial Distribution of Age at Diagnosis & Tumor Volumes

BACKGROUND

- Non-white women are diagnosed with breast cancer at younger ages and/or with more advanced disease compared to white women^{1,2}
- Discrepant recommendations on screening initiation ages between 40-50 years & no recommendations account for race/ethnicity
- Early breast cancer screening proposed for non-white populations may be adversely affected by current screening guidelines³

OBJECTIVE

Apply the USPSTF, ACS & ACR screening guidelines to understand screening rates at our institution and theoretical effect of different screening guidelines on breast cancer diagnosis in an urban. diverse and medically underserved population

METHODS

- Retrospective review of all female breast cancer patients diagnosed between 2014-2016 from a single institution
- Demographics, tumor characteristics, radiographic findings & surgical interventions evaluated
- Tumor volume was calculated using the ellipsoid volume formula (TV=(pi/6)*W*L*H)⁴ & mammogram used to determine whether patients would have been diagnosed by screening mammography at time of diagnosis; visible lesions 1 cm or greater considered detectable

RESULTS

204 patients total cohort:

- Median age 55, 70% patients age 50+, majority patients Hispanic Median tumor volume: 2.96 cm³
- Median invasive breast cancer tumor volume: 3.32 cm³
- o Tumor volumes among Black patients significantly larger than in White patients

	All Races		White	Hispanic	Black	Asian	p-value	
ge at Diagnosis	n=204	%	n=26 (12.7%)	n=108 (52.9%)	n=38 (18.6%)	n=32 (15.7%)		
edian age at agnosis (range)		55 (22-79)	55	53.5	55	58.5	One-way ANOVA, 0.343	
50	61	30.0%	6 (23.1%)	37 (34.3%)	9 (23.7%)	9 (28.1%)	Y ² tort 0 512	
) and over	143	70.0%	20 (76.9%)	71 (65.7%)	29 (76.3%)	23(71.9%)	X (est, 0.312	
) and over with prior ammography	62 (of 143)	43.4%	9 (45.0%)	35 (49.3%)	9 (31.0%)	9 (39.1%)	X ² test, 0.391	
umor Volumes		n=161	n=22	n=83	n=30	n=26		
edian tumor volume ange cm3)	2.9	96 (0.03- 88.05)	0.90 (0.08- 15.7)*	2.56 (0.03- 88.05)	4.09 (0.06- 60.07)*	3.77 (0.04- 31.15)	One-way ANOVA, 0.040	
edian invasive breast ancer tumor volume ange cm3)	3.3	n=155 32 (0.03-	n=22 0.90 (0.08-	n=78 2.76 (0.03-	n=30 4.09 (0.06-	n=25 3.77 (0.04-	One-way	

RESULTS

- 189 patients with mammogram from time of diagnosis included in screening guideline application
- 45% diagnosis by screening among patients 50+ vs. 96% diagnosis by palpable mass among patients <40 years

Figure 1: Racial Distribution of Clinical Stage Figure 2: Age Distribution of Clinical Presentation

	# Screening-Age Pts Captured	Total # Screening- Age Pts	# Screening Age Pts Missed	True % Dx Among Pts of Screening Age	True % Dx by Screening (all ages)					
USPSTF in practice (age 50 and over)	64	142	78	45.1%	36.6%					
Theoretical Application of Screening Guidelines	# Screening-Age Pts Captured*	Total # Screening- Age Pts	# Additional Pts Captured	% Dx Among Pts of Screening Age**	Theoretical % Dx by Screening***					
USPSTF guidelines (age 50 and over)	131	134	67	97.8%	69.3%					
ACS guidelines (age 45 and over)	152	155	81	98.1%	80.4%					
ACR guidelines (age 40 and over)	162	169	89	95.9%	85.7%					
" ≢ of pts of screening-age who had 'positive' mammographic finding at time of diagnosis										
**# screening-age pts captured divided by total # screening-age pts										

Table 4: Theoretical Application of Screening Guidelines

RESULTS

- % diagnosis by screening increased from 45% to 98% among pts 50+ with 'perfect' USPSTF screening
- \circ 37% \rightarrow 69% diagnosis by screening all ages
- ACS screening: 98% diagnosis by screening among pts 45+ 80% diagnosis by screening all ages
- ACR screening: 96% diagnosis by screening pts 40+
- 86% diagnosis by screening all ages

DISCUSSION

- Limitations: small sample size & retrospective study of population with known breast cancer
- Most patients presented with mammogram-detectable tumors given most tumor volumes measured >1cm³
- In our patient population, lowering screening age would increase diagnosis by screening vs. palpable mass
- Diagnosis by screening would increase to 86% if ACR-recommended initial screening age used
- Increased screening compliance could improve earlier diagnosis and BCT-eligibility
- Optimal USPSTF compliance alone would increase % diagnosis by screening from 45% to 98% among patients aged 50+

CONCLUSIONS

Applying these lower age limit screening guidelines to our breast cancer patients in a diverse, medically underserved setting increased the theoretical detection rate by 33%, 44% & 49% Future studies needed to re-evaluate which screening guidelines to follow in large health care systems that serve predominantly minority patients, and to evaluate cost vs. benefit of earlier screening

REFERENCES

- Azz H Nausan F, San C, et al. Early created breast carcinoma in African American women with poor prognostic factors. Am J Clin doi:10.1007/000004119991000-00002 Icplai J, Ginsburg C, Rochon PA, Sun P, Nard SA. Differences in breast cancer stage at Garposis and cancer-specific State [published correction appears in 14/AZ 275 J. and 32(22)227J. JAMA 2015313(2):16517.16 to 10:101/jama 2014.1732 set of breast carcinoma in African American women with poor prognostic factors. Am J Clin Oncol. 1999;22(5):4
- Stapistics SM, Colen TD, Babadekov YJ, Hing YC, Chang DC, RacelEthnicity and Age Datribution of Breast Cancer Diagnosis in the United States. JAMA Surg. 2016;153(6): 394–365. doi:10.1016/jamanarg.2018.0035 Skju J, Kovidsa L, Dreker DA, Kocsis P, Gajdi D, Sajzi Z, Turor Volume Estimation and Casari-Continuous Administration for Most Effective Bevacizumab Therap PLoS One. 2015;10(1):904–310. DNathee 2015 Nov 5-6 doi:10.1371/journal.pone.0142190

Clinical Presentation by Age Range