

Changes in Surgical Management Over Time in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy

Minna Lee MD, Sarah Walcott-Sapp MD, Marissa Srour MD, Michael Luu MPH, Farin Amersi MD, Armando Giuliano MD, Alice Chung MD Department of Surgery, Division of Surgical Oncology

Department of Surgery, Division of Surgical Oncology Department of Biomedical Sciences, Biostatistics and Bioinformatics Research Center ______Cedars-Sinai Medical Center

Introduction

- With advances in systemic and targeted therapies for breast cancer, downstaging following neoadjuvant chemotherapy (NAC) has increased.
- Surgical management of both the breast and axilla has evolved with the increasing use of breast conserving surgery (BCS) and sentinel lymph node biopsy (SLNB).
- The changes in surgical management in response to downstaging after NAC are still being evaluated.

Objective

- To evaluate our institutional experience with NAC
- To evaluate temporal trends in surgical technique over time

Methods

- We queried a prospectively maintained database of women with breast cancer who underwent NAC followed by an operation at our institution from 2007-2017
- · 352 women with stage I-III breast cancer
- Compared trends over time between two groups: early group (diagnosed 2007-2013) and recent group (diagnosed 2014-2017)
- Groups were chosen based on the major inflection point of increasing use of BCS and SLNB
- Continuous and categorical variables compared using welch t-test and chisquare test
- Median follow-up determined by the reverse Kaplan-Meier method
- Time to event analysis compared using the log-rank test

Results

• Table comparing clinical characteristics, surgical management, pathologic features, and complications between the early group and late group

Variable	Early Group	Recent Group	p-value
	(n=173)	(n=179)	
Age mean (SD)	49.8 (12.1)	52 1 (14 5)	0.099
Histological type (%)	77.0 (12.1)	52.1 (14.5)	0.077
	15 (100 1)		0.070
Invasive ductal carcinoma	154 (90.1)	170 (95.5)	0.078
Subtype (%)			
Estrogen receptor positive	92 (54.8)	102 (57.0)	0.758
HER2 positive	51 (30.4)	95 (53.1)	<0.001
Triple negative	50 (29.8)	40 (22.3)	0.146
Clinical T stage (%)			0.059
1	26 (15.4)	36 (20.6)	
2	89 (52.7)	106 (60.6)	
3	33 (19.5)	21 (12.0)	
4	20 (11.8)	11 (6.3)	
Clinical N stage (%)			<0.001
N0	52 (30.4)	92 (52.3)	
N+	119 (69.6)	84 (47.7)	
Staging imaging (%)	148 (86.0)	135 (75.4)	0.017
Breast surgery (%)			0.021
BCS	44 (25.4)	67 (37.4)	
Mastectomy	129 (74.6)	112 (62.6)	
Axillary surgery (%)			<0.001
SLNB	42 (24.3)	113 (63.1)	
ALND	119 (68.8)	51 (28.5)	
SLNB + ALND	12 (6.9)	14 (7.8)	
pCR (%)	39 (22.5)	74 (41.6)	<0.001
Pathologic T stage (%)			0.001
0	43 (24.9)	78 (43.6)	
1	64 (37.0)	61 (34.1)	
2	39 (22.5)	29 (16.2)	
3	20 (11.6)	7 (3.9)	
4	7 (4.0)	4 (2.2)	
Pathologic N stage (%)			<0.001
0	90 (52.0)	130 (73.0)	
	47 (27.2)	33 (18.5)	
2	23 (13.3)	12 (6.7)	
3	13 (7.5)	3 (1.7)	
Positive margin (%)	14 (8.1)	11 (6.2)	0.574
Any 30 day complication (%)	15 (8.7)	28 (15.6)	0.067
Breast 30 day complication (%)	11 (6.4)	23 (12.8)	0.060
Axillary 30 day complication (%)	3 (1.7)	3 (1.7)	1.000

Results

- With a median follow-up of 43.7 months, there was no significant difference between groups in:
 - breast recurrence (p=0.887)
 - axillary recurrence (p=0.298)
 - distant recurrence (p=0.455)

Conclusion

- Rates of BCS and SLNB following NAC significantly increased after 2013.
- The rate of pathologic complete response increased in more recent years likely due to improved therapies and patient selection.
- There was a low rate of local and regional recurrence overall.
- There was no increase in recurrence with less aggressive surgical management.