Effect of Hospital Volume on Overall Survival after Surgery in Elderly Breast Cancer Patients

Sam Z. Thalji, MD¹; Julia Frebault, BS¹; Youngjoo Cho, PhD²; Abigail Thorgerson, BS²; Carmen R. Bergom, MD, PhD³; Chiang-Ching Huang, PhD²; Amanda L. Kong, MD, MS¹

¹Department of Surgery, Medical College of Wisconsin, Milwaukee, WI; ²Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI; ³Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI

BACKGROUND AND AIMS

- Higher hospital volume has been shown to be associated with improved outcomes and increased overall survival following treatment for certain cancers.
- In breast cancer, high-volume centers are associated with differences in patterns of multi-modal care that may explain their associated overall survival advantage.
- There remains a paucity of data examining treatmentrelated outcomes specifically in breast cancer patients age 80 and older.
- Primary Aim

Determine the association between hospital volume and overall survival following surgery for breast cancer in patients 80 years of age and older.

Secondary Aim

Determine patient and treatment-related characteristics associated with high volume centers.

METHODS

<u>Dataset</u>

National Cancer Database 2005-2014

Inclusion Criteria

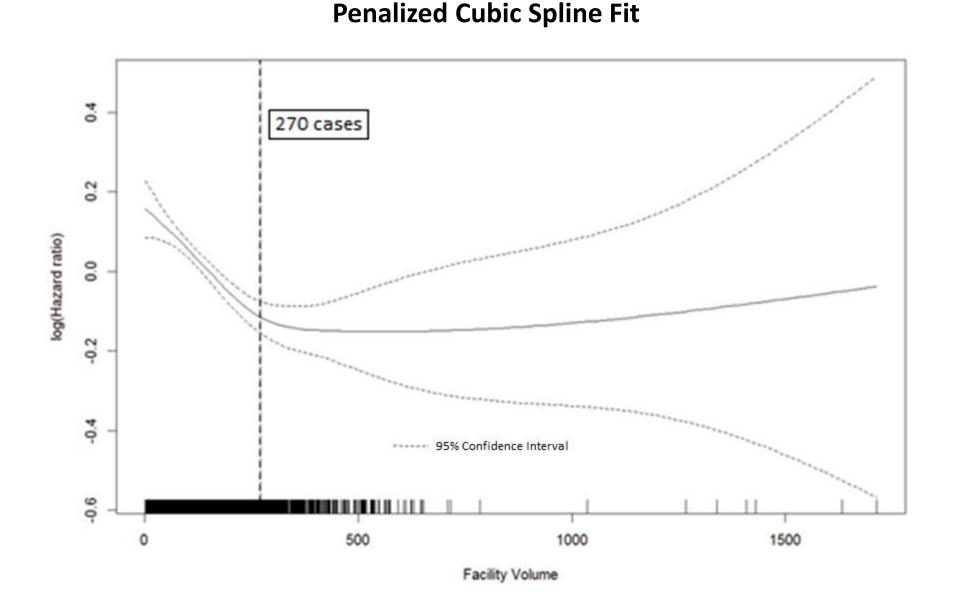
- Women aged 80 years and older
- Underwent surgery for stage I III invasive breast cancer
- All or most treatment at the reporting facility

Exclusion Criteria

- Metastatic or concurrent primary cancers
- Incomplete staging data
- Missing tumor characteristics
- Histology other than invasive breast cancer

METHODS

Determination of Volume Cut-point

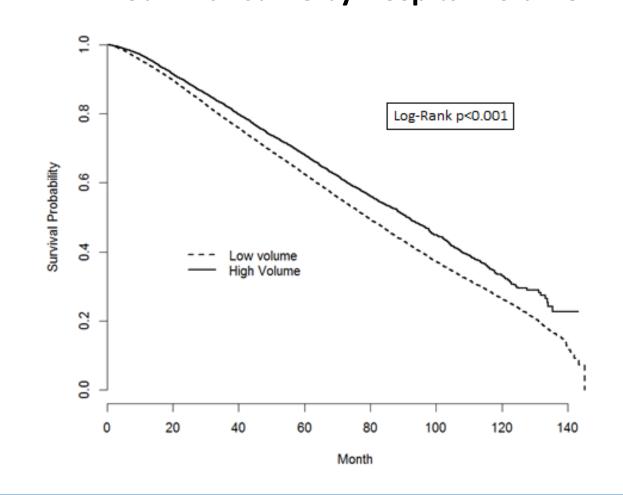

- Hospital Volume defined as average cases over two years
 - Year of patient index operation and the year prior
- Multivariate (MV) Cox proportional Hazards model with Penalized Cubic Splines
- Analysis of log hazard ratio (HR) of overall survival (OS) for point of maximal change
- Cut-point for OS based on Hospital Volume : ≥ 270 cases/year Statistical Analysis
- X² univariate analysis of patient/tumor factors, Kaplan Meier method, Log-Rank test for OS by Hospital Volume
- Cox proportional Hazards model of patient/tumor factors for OS

RESULTS

Univariate Comparison of Demographics and Clinicopathological Characteristics by Hospital Volume

	LOW VOIGINE	riigii volullie	
	(< 270 cases/yr)	(≥ 270 cases/yr)	
	N=49,933	N=9,110	P value
Age			< 0.001
80-84 yrs	29,511 (59.10%)	5,546 (60.88%)	
85-89 yrs	15,113 (30.27%)	2,710 (29.75%)	
≥ 90 yrs	5,309 (10.63%)	854 (9.37%)	
Race			< 0.001
Non-Hispanic White	40,949 (82.01%)	7,284 (79.96%)	
Non-Hispanic Black	3,169 (6.35%)	745 (8.18%)	
Hispanic	1,249 (2.50%)	363 (3.98%)	
Other/Unlisted	4,566 (9.14%)	718 (7.88%)	
Co-Morbidities			0.004
None	38,191 (76.48%)	7,085 (77.77%)	
1	9,111 (18.25%)	1,615 (17.73%)	
2	2,043 (4.09%)	330 (3.62%)	
≥3	588 (1.18%)	80 (0.88%)	
Tumor Size			0.036
≤ 2 cm	30,097 (60.65%)	5,580 (61.81%)	
2 to 5 cm	16,507 (33.26%)	2,878 (31.88%)	
> 5 cm	3,024 (6.09%)	569 (6.30%)	
Tumor Stage			< 0.001
I	26,267 (54.32%)	4,997 (56.58%)	
II	16,970 (35.09%)	3,007 (34.05%)	
III	5,123 (10.59%)	827 (9.36%)	
Type of Surgery			< 0.001
Lumpectomy	30,659 (61.62%)	6,218 (68.59%)	
Mastectomy	18,871 (37.93%)	2,791 (30.79%)	
Mast + Recon	222 (0.45%)	57 (0.63%)	
Radiation Therapy			0.004
Yes	18,019 (36.56%)	3,420 (38.17%)	
Chemotherapy	10,019 (30.30/0)		
	10,019 (30.30%)		0.409
Yes	2,891 (6.02%)	549 (6.25%)	0.409
Hormone Therapy		549 (6.25%)	0.409
		549 (6.25%) 4,687 (53.52%)	

Multivariable Cox Proportional Hazards Model with



Multivariable Cox Proportional Hazards Model for Overall Survival

		Overall Survival	
	Hazard Ratio	95% Confidence Interval	P value
Centers by Volume			
Low Volume	Ref	-	-
High Volume	0.84	0.80 – 0.87	<0.001
Age			
80-84 yrs	Ref	-	-
85-89 yrs	1.52	1.47 – 1.56	<0.001
≥ 90 yrs	2.29	2.19 – 2.38	<0.001
Co-Morbidities			
None	Ref	-	-
1	1.36	1.32 - 1.41	<0.001
2	1.85	1.74 – 1.96	<0.001
≥3	2.60	2.35 – 2.88	<0.001
ER Status			
Positive	Ref	-	-
Negative	1.07	1.02 – 1.13	0.006
PR Status			
Positive	Ref	-	-
Negative	1.09	1.05 - 1.13	<0.001

	Overall Survival			
	Hazard Ratio	95% Confidence Interval	P value	
Tumor Size				
≤ 2 cm	Ref	-	-	
2 to 5 cm	1.27	1.21 – 1.34	< 0.001	
> 5 cm	1.52	1.42 – 1.63	< 0.001	
Tumor Grade				
Ī	Ref	-	-	
II	1.06	1.02 – 1.10	0.001	
III	1.29	1.24 - 1.34	< 0.001	
IV	1.39	1.12 – 1.73	0.003	
Tumor Stage				
I	Ref	-	-	
II	1.23	1.17 – 1.30	<0.001	
III	2.14	2.01 – 2.28	<0.001	
Radiation Therapy	0.69	0.67 - 0.71	<0.001	
Chemotherapy	0.72	0.68 - 0.77	<0.001	
Hormone Therapy	0.71	0.68 - 0.73	<0.001	

KM Survival Curve by Hospital Volume

SUMMARY AND CONCLUSIONS

- Among elderly **breast cancer patients age 80 and above**, there is a significant association between undergoing surgery at a **high-volume center** and **improved survival**.
- Overall survival improves with increasing Hospital Volume up to **270 cases per year**, above which these high-volume centers share an equal survival benefit.
- Patients in this population who undergo surgery at high-volume centers are characterized by an earlier stage of disease and more commonly receive breast-conserving surgery, as well as subsequent adjuvant radiation.

Next Steps

RESULTS

- Identify systems in place at high-volume centers that may result in more consistent and comprehensive multi-modal therapy for breast cancer.
- Develop actionable strategies to improve care at all institutions that treat breast cancer.

