

Women with higher BMI do not have Higher **Recurrence Scores (RS)-a Single Institution Series** Maria K. Pomponio BA, Susanna M. Nazarian MD, PhD, Julia C. Tchou MD, PhD

INTRODUCTION

Obesity is Prognostic of Poor Outcome in Breast Cancer Patients Eastern Cooperative Oncology Group¹

- 6885 women with stage I-III breast cancer enrolled in 3 clinical trials
- Obesity was associated with diminished DFS, OS, and breast cancer specific survival in HR+/HER2- breast cancer, but not triple-negative or HER2+ disease

Meta-analysis²

- Pooled analysis of 82 studies assessing the relationship between higher BMI and survival
- Compared to normal weight women, obese (BMI >30.0), and overweight (BMI 25.0– <30.0) women had higher relative risks of overall mortality and breast cancer specific mortality

The Relationship between Oncotype DX recurrence score (RS) and BMI is largely unexplored

Muniz³

- 533 eligible women, 22% had metabolic syndrome
- No correlation between metabolic syndrome and higher RS

Lohrisch et al⁴

- 166 ER+, node negative patients breast cancer patients who had both Oncotype DX and BMI data
- Obese patients (BMI >30) had similar proportions of low, intermediate, and high RS tumors.

Wellspan Group⁵

- 125 patients with ER+ breast cancer who had Oncotype DX and BMI within one year of diagnosis
- BMI was recorded at diagnosis, 6 months and/or 12 months
- No correlation was seen between RS and BMI at diagnosis, at 6 months and at 12 months respectively.
- Changed in BMI from diagnosis to 12 months were not associated with RS

HYPOTHESIS

We hypothesize that tumors in women with higher BMI have higher recurrence scores (RS)

Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

RESULTS							
	BMI <25		BMI 25 to < 30		BMI ≥ 30		Р
Total States	590	37.7%	479	30.6%	497	31.7%	
RS (median IQR) ²	16 (11-25)		15 (10-20)		16 (11-21)		0.12
RS Group ¹							
≤10	125	31.7%	126	26.3%	118	23.7%	0.22
11-25	382	64.8%	302	63.0%	312	62.8%	
≥26	83	14.1%	51	10.6%	67	13.5%	
Tumor Size, mm (median IQR) ²	12 (8-17)		13 (9-19)		12 (8-20)		0.02
Grade ¹	1.1	A series	A start		1	Sec. 1	
Low	187	31.69%	118	24.63%	136	27.36%	
Intermediate	296	50.17%	269	56.16%	255	51.31%	0.05
High	74	12.54%	67	13.99%	81	16.30%	
Unknown	33	5.59%	25	5.22%	25	5.03%	
Adjuvant Treatment ¹				19 1 1			
Hormone Therapy	563	95.4%	455	95.0%	472	95.0%	0.80
Radiation Therapy	337	57.1%	292	61.0%	330	66.4%	< 0.0
Chemotherapy	100	16.9%	78	16.3%	83	16.7%	0.96
Recurrence ¹	15	2.5%	9	1.9%	20	4.0%	0.11

- Sparano JA, Wang M, Zhao F, et al. Obesity at diagnosis is associated with inferior outcomes in hormone receptor-positive operable breast cancer. Cancer. 2012;118(23):5937-5946. doi:10.1002/cncr.27527
- Chan DSM, Vieira AR, Aune D, et al. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014;25(10):1901-1914. doi:10.1093/annonc/mdu042
- Muniz J, Kidwell KM, Henry NL. Associations between metabolic syndrome, breast cancer recurrence, and the 21-gene recurrence score assay. Breast Cancer Res Treat. 2016. doi:10.1007/s10549-016-3846-4
- 4. Lohrisch CA, Davidson A, Chia SKL, et al. Relationship between body mass index (BMI) at diagnosis of ER+ node negative breast cancer (BC) and Oncotype DX recurrence score. J Clin Oncol. 2012;30(15_suppl):582. doi:10.1200/jco.2012.30.15_suppl.582
- 5. Yap KKL, Efiom-Ekaha DN. Is obesity associated with increased recurrence risk in estrogen receptor (ER)positive breast cancer? J Clin Oncol. 2011;29(27_suppl):171. doi:10.1200/jco.2011.29.27_suppl.171
- 6. Paik S, Shak S, Tang G, Kim C. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004:2817-2826.

the cure is with ABRAMSON CANCER CENTER

- Patient demographics were similar
- radiation use
- score assay.

FUTURE DIRECTIONS

- progression.

REFERENCES

- 7. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24(23):3726-3734. doi:10.1200/JCO.2005.04.7985
- 8. Sparano JA, Gray RJ, Makower DF, et al. Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. N Engl J Med. 2015;373(21):2005-2014. doi:10.1056/nejmoa1510764
- 9. Sparano JA, Gray RJ, Makower DF, et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N Engl J Med. 2018;379(2):111-121. doi:10.1056/nejmoa1804710

DISCUSSION

• Patients with BMI >25 had larger tumors, higher histologic grade, and higher rates of adjuvant

 Obesity may affect expression of reporter genes other than those used in the 21-gene recurrence

• Expand our cohort to include patients with 1-3 positive axillary lymph nodes, given the updated inclusion criteria of Oncotype DX

Future work is needed to elucidate the genetic and epigenetic effects of obese state on tumor